Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

☐ Coloured covers / Couverture de couleur
☐ Covers damaged / Couverture endommagée
☐ Covers restored and/or laminated / Couverture restaurée et/ou pelliculée
☐ Cover title missing / Le titre de couverture manque
☐ Coloured maps / Cartes géographiques en couleur
☐ Coloured ink (i.e. other than blue or black) / Encre de couleur (i.e. autre que bleue ou noire)
☐ Coloured plates and/or illustrations / Planches et/ou illustrations en couleur
☐ Bound with other material / Relié avec d'autres documents
☐ Only edition available / Seule édition disponible
☐ Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.
☐ Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

☐ Additional comments / Commentaires supplémentaires:

L'institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

☐ Coloured pages / Pages de couleur
☐ Pages damaged / Pages endommagées
☐ Pages restored and/or laminated / Pages restaurées et/ou pelliculées
☐ Pages discoloured, stained or foxed / Pages décolorées, tachetées ou piquées
☐ Pages detached / Pages détachées
☐ Showthrough / Transparence
☐ Quality of print varies / Qualité inégale de l'impression
☐ Includes supplementary material / Comprend du matériel supplémentaire
☐ Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscures par un feuillet d'errata, une peurle, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

☐ Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below / Ce document est filmé au taux de réduction indiqué ci-dessous.

<table>
<thead>
<tr>
<th>Reduction Ratio</th>
<th>10x</th>
<th>14x</th>
<th>18x</th>
<th>22x</th>
<th>26x</th>
<th>30x</th>
<th>32x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

This selection of reduction ratios is intended to approximately correspond to the degrees of magnification indicated on the microfilm print that accompanies this cover. / Cette sélection de taux de réduction est destinée à correspondre approximativement aux degrés de grossissement indiqués sur l'emballage du film microfilmé qui accompagne cette couverture.
The copy filmed here has been reproduced thanks to the generosity of:

Library
Agriculture Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol ➔ (meaning “CONTINUED”), or the symbol ▽ (meaning “END”), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

1 2 3
PAMPHLET No. 8.

DOMINION OF CANADA.

CENTRAL EXPERIMENTAL FARM.

WM. SAUNDERS, C.M.G.,

Director.

FRANK T. SHUTT,

Chemist.

THE PRESERVATION OF FRUITS FOR EXHIBITION PURPOSES.

BY FRANK T. SHUTT, M.A.

Dominion Chemist.

For the past twenty-five years experiments have been carried on by the officers of the Central Experimental Farm in the preservation of fruits for exhibition purposes. The first experiments were made immediately prior to the time of the Indian and Colonial Exhibition, London, England, in 1886, when a large number of anti-septic fluids were tried and a collection of 1,000 jars, from one quart to five gallons each, filled with various fruits, preserved in the most successful of these solutions, were exhibited. This exhibit was prepared by Dr. Wm. Saunders, C.M.G., Director, Experimental Farms, who attended the exhibition and with the material erected a trophy which attracted much attention. Subsequent to this, many exhibits of preserved fruits have been made at provincial and other large exhibitions, using the formulae originated at the Experimental Farms.

During more recent years, the experiments have been conducted by the Chemical Division with the co-operation and assistance of the Horticultural Division and as a result, several new and satisfactory fluids have been added to the list. In the course of this investigation, the merits of more than fifty different solutions with various kinds of fruits have been tested, and that the problem is a difficult one will be apparent from the fact that more than 75 per cent of these fluids have been found unsatisfactory.

The object has been to find fluids that would not only preserve the fruit from spoiling but keep it, as far as possible, with its natural colour and size.

Among the more successful of the fluids examined, the following stand today at the head of the list; after a careful and thorough testing, extending at least over five years, they have all been found very fairly satisfactory, and can, therefore, be recommended to those who may have occasion to exhibit fruit several months after it has been picked.

In the preparation of these fluids, it is desirable to employ distilled water, usually obtainable from druggists at a small cost. The alcohol used in these formulae may be the ordinary spirits of wine.

Fluid No. 1.—Formaldehyde.

Formaldehyde (formalin) 1 part.
Alcohol 5 parts.
Water, to make 50

To prepare one gallon of the fluid 31 ounces of formaldehyde and 16 ounces of alcohol will be required, the remainder of the gallon to be made up with water.

12375—1
The addition of a volume of hydrogen peroxide equal to that of the formaldehyde has been found to somewhat enhance the value of this fluid for red fruits.

Fluid No. 2.—Boric Acid.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boric (boracic) acid.</td>
<td>1 part.</td>
</tr>
<tr>
<td>Alcohol</td>
<td>5 parts.</td>
</tr>
<tr>
<td>Water, to make</td>
<td>50 "</td>
</tr>
</tbody>
</table>

For one gallon, 3 gills of boric acid and 16 ounces of alcohol will be required.

The powdered form of boric acid is the most convenient to use. There is no necessity to employ hot water, but stirring should be continued until complete solution is effected.

Fluid No. 3.—Zinc Chloride.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc chloride</td>
<td>3 parts.</td>
</tr>
<tr>
<td>Alcohol</td>
<td>10 "</td>
</tr>
<tr>
<td>Water, to make</td>
<td>100 "</td>
</tr>
</tbody>
</table>

For one gallon of fluid, 5 ounces of zinc chloride and 16 ounces of alcohol will be required.

Zinc chloride, of good quality, passes readily into solution; any white, flocculent precipitate that may appear is allowed to settle out and the clear fluid decanted.

Fluid No. 4.—Sulphurous Acid.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphurous acid</td>
<td>1 part.</td>
</tr>
<tr>
<td>Alcohol</td>
<td>10 "</td>
</tr>
<tr>
<td>Water, to make</td>
<td>10 parts</td>
</tr>
</tbody>
</table>

For one gallon, 16 ounces each of sulphurous acid and of alcohol will be required.

Fluid No. 5.—Copper Sulphate.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper sulphate</td>
<td>2 parts.</td>
</tr>
<tr>
<td>Alcohol</td>
<td>10 "</td>
</tr>
<tr>
<td>Water, to make</td>
<td>100 "</td>
</tr>
</tbody>
</table>

For one gallon, 3 1/2 ounces of copper sulphate and 16 ounces of alcohol will be required.

To facilitate solution, powder the copper sulphate (bluestone) and dissolve it in a small quantity of hot water; when cold, add the alcohol and the remainder of the water to the required volume.

Fluid No. 6.—Alum.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alum</td>
<td>5 parts.</td>
</tr>
<tr>
<td>Alcohol</td>
<td>10 "</td>
</tr>
<tr>
<td>Water, to make</td>
<td>100 "</td>
</tr>
</tbody>
</table>

For one gallon, 8 ounces of alum and 16 ounces of alcohol will be required.

If powdered alum is not obtainable, crush the crystals and dissolve as directed in No. 5.

For the most successful treatment, it is desirable to have the fruit sound, unbruised and not over-ripe when placed in the fluid. When practicable, the fruit should be left on the stalk or branch, the whole being so supported or suspended in the bottle that the fruit is not subjected to any undue pressure. Sufficient fluid should be used to completely cover the fruit. It is well to hermetically seal the stopper with melted paraffin and to keep the bottles of preserved fruit in a cool, darkened room.
RECOMMENDATIONS.

In the following paragraphs, the fluids are indicated that have proven the best preservatives with the various fruits under trial.

Apples and Crabs:—

Red: No. 2; the best fluid in the larger number of tests. No. 1 has also proved effective for many varieties.

Green and Russet: No. 3.

White and Yellow: No. 4. This solution while in most respects quite satisfactory, is apt to give the fruit an unnatural paleness.

No. 2. A fairly satisfactory fluid.

Beans in Pod:—

Green: No. 5; this is undoubtedly the best fluid. No. 1 may be used for short periods of preservation.

Yellow or Wax: No. 3 has given the best results. No. 4: can be used but bleaches rather excessively.

Currants:—

Black: No. 1 and No. 2. Both are fairly satisfactory, the preference perhaps being with No. 1. Owing to the large amount of colouring matter extracted at the outset from this fruit, the fluid should be changed, say at the expiration of two or three weeks.

Red: No. 3, closely followed by No. 2, are successful preservatives for the fruit.

White: No. 2 and 3 are almost equally satisfactory.

Gooseberries:—

No. 5; this fluid has given very good results—incomparably better than any of the other solutions under investigation.

Grapes:—

Black: No. 1 is satisfactory and excellent.

Red: No. 3 is probably the best. No. 1 (with peroxide of hydrogen) and No. 2 have been used successfully.

White: (green) No. 4 and No. 3. Neither of these has proven very satisfactory, but No. 2 seems better.

Peas in Pod:—

No. 5; by far the best. No. 3 has been used with some success for short periods.

Plums:—

Our experience in preserving this fruit has been very limited, but fluid No. 2 has been used with fair success.

Raspberries:—

Red and Purple: A very difficult fruit to preserve in its natural form and colour. No. 6. This is the best of the many fluids tried; by an occasional change of solution, this preservative gives fairly good results.

White: No. 2.

Strawberries:—

No. 1: this fluid, both with and without peroxide, will preserve the fruit with much of its natural colour. No other fluid among those under experiment has proven at all satisfactory for this fruit.

Tomatoes:—

No. 2 has given fairly satisfactory results.